
Scala Center updates
Q3 2019 Advisory Board meeting
Scala Center team: Jorge Vicente Cantero, 100%; Ólafur Geirsson, 100% until July 31st; Julien
Richard-Foy, 60%; Alexandre Archambault, 100%; ; Darja Jovanovic, 80%; Sébastien
Doeraene, 100%

At a glance
● Dependency management (SCP-020)
● coursier
● MOOCs
● TASTy Reader for Scala 2 (SCP-018, start of the project)
● Metals
● Bloop
● Scala Libraries and Documentation
● Scala Compiler
● Scala.js
● Scala Days 2019 organisation
● SIP Meetings
● Communication and Community

Dependency management (SCP-020)
@alexarchambault, @sjrd

Most of the technical work for SCP-020 had been done in the previous cycles, but the
documentation and global articulation of how the pieces contributed to addressing SCP-020 was
previously not good enough. Therefore, we first recap everything related to that
Recommendation.

Documentation of how sbt resolves dependencies
We published the following documentation about how coursier -- used by default in sbt as of
v1.3.0 -- resolves dependencies: ​https://get-coursier.io/docs/other-version-handling​. The
documentation covers the precise algorithms, with examples.

Eugene Yokota from Lightbend then contrasted the above documentation with the old
algorithms used by Ivy (which was used by default until sbt 1.2.x): "​Dependency resolver
semantics​".

https://get-coursier.io/docs/other-version-handling
http://eed3si9n.com/dependency-resolver-semantics
http://eed3si9n.com/dependency-resolver-semantics

Better conflict manager
coursier, whether in sbt plugin form or integrated in sbt 1.3.x, has been enhanced to support the
existing conflictManager setting of sbt. In particular, it supports the Strict mode which refuses to
reconcile two incompatible versions.

Going further, coursier was enhanced with a low-level mechanism of Rules to implement more
advanced resolution strategies. Recently these low-level mechanisms were exposed as a public
API with a generic concept of Reconciliation. With sbt-coursier, they allow to specify, per
organization/artifact pair (or patterns for organization/artifact pairs), how different versions
should be reconciled. Reconciliation strategies have already been released for existing
semantics:

● Default, for coursier's default strategy, as documented above
● Relaxed, matching sbt's old default strategy
● Strict, which works like Default except it refuses to replace a specific version by another

one
● SemVer, which works like Default except it refuses to replace a specific version V.x by

another one U.y if V and U are different (so that 1.2.5 can be replaced by 1.3.7 but not
by 2.1.0)

Since Reconciliation strategies can be specified per artifact, they can encode once and for all
the compatibility guarantees offered by individual libraries. An example would be cats-core,
which guarantees SemVer compatibility, and can therefore be specified as follows (requires
sbt-coursier):

versionReconciliation += "org.typelevel" %% "cats-core" % "semver"

Now, if the codebase transitively depends on two versions of cats-core that are
SemVer-compatible, the most recent one will be used; but if it depends on two different major
versions, the resolution will report a conflict.

Static analysis to check potential LinkageErrors
The Reconciliation strategies above are great if libraries provide clear guarantees about binary
compatibility. If they do not, we can go one step further, and, given a particular resolution,
statically analyze the classpath to check, ahead of time, for potential LinkageErrors that could
happen at run-time.

The static analysis itself was already available as the ​missinglink tool, developed by Spotify.
However, it was only available for Maven. We developed an sbt plugin, namely ​sbt-missinglink​,
to allow using it from sbt codebases. Using that plugin, checking a particular codebase for
potential conflicts is as easy as a) adding the following sbt plugin:

addSbtPlugin("ch.epfl.scala" % "sbt-missinglink" % "0.1.0")

then running the sbt task

https://github.com/spotify/missinglink
https://github.com/scalacenter/sbt-missinglink

> missinglinkCheck

We will continue to develop sbt-missinglink with further settings to customize the behavior,
notably to filter out certain conflicts (similar to what MiMa allows). Should the need arise, we
could also advance missinglink itself.

A blog post documenting all this for the public will be released in the next few days. You may
read the work-in-progress ​in this gist​, although most points have been addressed hereinabove.

coursier
@alexarchambault

Native CLI
We managed to have the CLI of coursier run as a native executable, via ​GraalVM ​native image​,
running significantly faster. Various changes were needed to have each command work fine
from the native executable (the ​launch commands starts a JVM to launch applications, the
bootstrap and ​install commands needed not to rely on reflection to detect main classes in a
classpath, etc.).

Native executables for Linux and OS X are now pushed upon release as ​GitHub release assets
(as ​cs-x86_64-apple-darwin​ and ​cs-x86_64-pc-linux​ for OS X and Linux).

As the Windows support in GraalVM somewhat lags behind the one of Linux and OS X, we did
not manage to generate native executables for Windows yet. As a workaround, we rely on ​jlink
via ​sbt-native-packager to generate a launcher that can be run without requiring a JVM. (As the
jlink archive ships with its own stripped down JVM.) These can be found in the GitHub release
assets as ​standalone-x86_64-pc-win32.zip​.

Overall, we now have launchers for the CLI of coursier that do not need a JVM to run, on most
major platforms (Linux, OS X, Windows). This opens up the possibility of offering to install and
manage JVMs ourselves. Our goal is not to be as featureful as ​SDKMAN or ​jabba​, but still offer
users to install the most common JVMs if needed.

Optimizations
We optimized various aspects of coursier, be it by needing less network round trips, or by
lowering CPU utilization.

Network requests
Some Maven repositories provide MD5 and SHA-1 checksums via HTTP headers when
downloading files. These are now used by coursier, avoiding to download checksum files
altogether.

https://gist.github.com/alexarchambault/58939363e9cd518a5f74fcb489f702d6
https://www.graalvm.org/
https://www.graalvm.org/docs/reference-manual/aot-compilation
https://github.com/coursier/coursier/releases/tag/v2.0.0-RC3-3
https://docs.oracle.com/javase/9/tools/jlink.htm#JSWOR-GUID-CECAC52B-CFEE-46CB-8166-F17A8E9280E9
https://github.com/sbt/sbt-native-packager
https://sdkman.io/
https://github.com/shyiko/jabba

More not-found errors are now kept in cache. This speeds up the version listing and
dependency string completion capabilities of coursier, that can rely on not-found errors rather
than checking directory listings for the existence of some files beforehand.

CPU usage
We replaced some regexes processing POM files before parsing by hand-written logic, and
added and now rely on optimized dependency sets during resolution (allowing to ignore
dependencies whose transitive dependencies are all brought by another more general
dependency).

Overall these optimizations bring some 30 to 50% speedup on some resolutions.

Miscellaneous
● support progress bars in the Windows console
● strict conflict manager from sbt
● fixes to support the ​evicted​ task of sbt
● take the ​dependencyOverride key into account (missing in some of the sbt integrations,

not in the original sbt-coursier plugin)

MOOCs
@julienrf

The existing courses (on Coursera and edX) have all been updated to Scala 2.13 (or Scala 2.12
for the ones that use Spark) and sbt 1.x. We plan to deploy these updated versions during
September.

We have been working on the “Functional Program Design” course to make its curriculum more
streamlined (the current version is made of parts of previous versions of other courses, but
everything is not consistent together). In particular, we have been replacing the content teaching
Future with new content teaching implicits. (​Future is covered both by our “Parallel
Programming” and “Reactive Programming” courses)

We have also been working on the flagship course, “Functional Programming Principles”, to
update its content for Dotty. In particular we have introduced enums early in the curriculum.

We plan to live-test the new content of these courses this semester with EPFL students before
deploying it on our online learning platforms.

TASTy Reader for Scala 2 (SCP-018, start of the
project)
@bishabosha

As the project started 2 weeks ago, we report on the general design direction at this point.

A key motivation for SCP-018 is to have a smooth story when migrating the ecosystem to Scala
3, so that we may finally unlock forwards binary compatibility. Ideally, projects will gradually
migrate to the new compiler, and projects built with Scala 2 will still benefit from new updates
from those that have migrated. One side of this story is already known: Scala 3 projects can
depend on Scala 2 binaries, as ​dotc can unpickle ​ScalaSignature annotations. The reverse is
not true at present. ​dotc does not generate ​ScalaSignature annotations, and ​scalac has no
infrastructure to read TASTy.

To address this, we have started the project ​TASTy Reader For Scala 2​, in which we add a
frontend to parse TASTy files and enter signatures into the symbol table of ​scalac​, allowing
Scala 2 projects to depend on libraries compiled with Scala 3.

With both Scala 3 able to read Scala 2 signatures, and Scala 2 able to read Scala 3's TASTy,
the ecosystem will be able to migrate from 2 to 3 one module at a time, in any order.

Metals
@olafurpg, VirtusLab

We released ​version 0.7.0​ then ​version 0.7.2​, with the following highlights:

● New tree view in VS Code
● Support for Scala 2.13.0 and 2.12.9
● Support for JDK 11
● Improved classpath indexing performance
● Bug fixes for importing builds in Gradle, Mill and sbt
● A lot of miscellaneous fixes

Bloop
@jvican

Preparation for v1.4.0, which we plan to release on September 26th. This version will feature:

● Automatic offloading of the compilation from sbt.
● Support for Semanticdb and Metals, to avoid Metals build tools integrations.
● Partial support for debugging.
● Support for Metals test/run.

https://scala.epfl.ch/projects.html#tastyScala2
https://scalameta.org/metals/blog/2019/06/28/thorium.html
https://scalameta.org/metals/blog/2019/09/02/thorium.html

● A redesigned installation process for bloop:
○ No more runtime dependency on Python in bloop (the official facebook/nailgun

script required Python).
○ Nailgun-based bloop client rewritten in Scala and available as both a GraalVM

binary and library.
○ Improvements in the launcher to make integrations with bloop trivial for any tool.

● Build pipelining will be enabled by default. There will be a comprehensive performance
analysis.

We also gave a talk at Scala World 2019 about bloop v1.3.2's build server semantics and how it
improves the state-of-the-art of build tools: ​"Design challenges of Bloop: a fast, concurrent build
server"​.

Scala Libraries and Documentation
@julienrf

We have been actively reviewing or contributing to various Scala repositories:

● Improved rendering of documentation (​#1437​, ​#1440​),
● Reviewed Alvin Alexander tutorial ​#1469​,
● Reviewed contributions to scala-collection-contrib (​#4​, ​#18​, ​#35​, ​#43​)
● Reviewed contributions to scala-collection-compat (​#238​, ​#247​)

Scala Compiler
@julienrf, @bishabosha

We have been collecting problematic cases related to the use of implicits, causing developer
frustrations. We have been exploring ways to improve the feedback given by the compiler. You
can see the summary of our experiments in the ​contributors discussion​.

Scala.js
@sjrd

We added support for ECMAScript 2020's dynamic ​import​()​ calls.

We discovered and implemented a new optimization for instance tests against classes, which
applies for ​isInstanceOf calls and more importantly pattern matching. The new optimization
brings speedups of up to 40% for applications that intensively use pattern matching.

Finally, we rewrote most of the ​java.util collections so that they do not depend on Scala
collections. The new implementations are faster, as they do not pile up logic to adapt the

https://jvican.github.io/slides/scalaworld-2019/Design-challenges-of-Bloop.pdf
https://jvican.github.io/slides/scalaworld-2019/Design-challenges-of-Bloop.pdf
https://github.com/scala/docs.scala-lang/pull/1437
https://github.com/scala/docs.scala-lang/pull/1440
https://github.com/scala/docs.scala-lang/pull/1469
https://github.com/scala/scala-collection-contrib/pull/4
https://github.com/scala/scala-collection-contrib/pull/18
https://github.com/scala/scala-collection-contrib/pull/35
https://github.com/scala/scala-collection-contrib/pull/43
https://github.com/scala/scala-collection-compat/pull/238
https://github.com/scala/scala-collection-compat/issues/247
https://contributors.scala-lang.org/t/better-implicit-search-errors-problematic-cases-wanted/3587

semantics of Scala collections to those of the JDK, but instead implement the correct semantics
from the start.

All those improvements will ship with Scala.js 0.6.29, which will be released within the next
couple of weeks.

Scala Days 2019 organisation
@darjutak

We finalized the organization and execution of Scala Days 2019 as planned in the report of
June 2019.

Beside the main goal of celebrating Scala’s many anniversaries, bringing the community
together for the conference as well as for the surrounding events, we as the Scala Center
succeeded in:

● Bringing visibility to the Scala Center and its projects
● Increasing our presence in Switzerland (2 sprees Dec-May 2019, signed 7 Swiss

company sponsors out of 22 potential)
● Establishing relationships with potential international supporters (sponsors, Advisory

Board members)
● Bringing together the sub-community of contributors and organisers and establishing

stronger relationships with them

We got an excellent feedback, based on ​this form​. For example:

The final report (with financial data, audience, etc.) is ongoing. In the meantime, here is an
extract of the communication outreach (cities) based on the Scala Days website analytics
(Jan-June 2019):

https://docs.google.com/forms/d/e/1FAIpQLSdyI71By9hiZA7FfFG0cSwqtR4-9I1SxcR47Qeb_28JYy_xMw/viewform

SIP Meetings
@darjutak

A SIP meeting took place on June 8th, in person, at EPFL. We will restart the monthly meetings
as of September.

Read the minutes here​, taken by Dale Wijnand.

Communication and Community
@darjutak

● Moderator training proposal draft, adding for discussion (​here​)
● Announcement of team changes and other Scala Center updates (​here​)
● Help in organising ​the 3rd Contributors Summit at Scala Sphere, Krakow, Poland. We

will be participating and leading discussions in October.

https://gist.github.com/dwijnand/63026cf799c9e4c36af57cd4245c1947
https://docs.google.com/document/d/1Igi8-gKoZd4fhpoiMtxW7aCjvBPBKuZzjPN50cV5LPo/edit
https://contributors.scala-lang.org/t/the-scala-center-activities-in-the-last-6-months-march-august-2019/3645
https://sphere.it/talk/scala-contributors-summit/

