
Scala Center updates, Q1 2019 Advisory
Board Meeting

Scala Center team: Jorge Vicente Cantero, 100%; Ólafur Geirsson, 100%; Julien
Richard-Foy, 50%; Alexandre Archambault, 100%; Darja Jovanovic, 100%; Sébastien
Doeraene, 100%

Initiatives worked on this cycle:
At a glance

● coursier
● Bloop
● MOOCs
● Documentation
● Metals
● mdoc
● Scala.js
● Scala Days 2019 organisation
● SIP meetings

coursier

@alexarchambault

coursier is a library to manage dependencies from Maven and Ivy repositories. It comes
along with a CLI to conveniently interact with dependencies, and an sbt plugin, for
coursier to replace Ivy in sbt.

We added a high-level API in coursier, aiming at being as simple to use as the CLI of
coursier. We made adjustments to the coursier-based sbt launcher, so that it's ready for
prime time. In the context of SCP-20, we're adding a "rules" mechanism to coursier,

https://github.com/scalacenter/wip-posts/blob/darjutak-Q1-2019-AB-report/Q1-March-2019.md#coursier
https://github.com/scalacenter/wip-posts/blob/darjutak-Q1-2019-AB-report/Q1-March-2019.md#Bloop
https://github.com/scalacenter/wip-posts/blob/darjutak-Q1-2019-AB-report/Q1-March-2019.md#moocs
https://github.com/scalacenter/wip-posts/blob/darjutak-Q1-2019-AB-report/Q1-March-2019.md#documentation
https://github.com/scalacenter/wip-posts/blob/darjutak-Q1-2019-AB-report/Q1-March-2019.md#metals
https://github.com/scalacenter/wip-posts/blob/darjutak-Q1-2019-AB-report/Q1-March-2019.md#mdoc
https://github.com/scalacenter/wip-posts/blob/darjutak-Q1-2019-AB-report/Q1-March-2019.md#Scala.js
https://github.com/scalacenter/wip-posts/blob/darjutak-Q1-2019-AB-report/Q1-March-2019.md#ScalaDays2019organisation
https://github.com/scalacenter/wip-posts/blob/darjutak-Q1-2019-AB-report/Q1-March-2019.md#sipmeetings

allowing similar guards as the strict conflict manager of Ivy or the Maven enforcer
plugin, and extending them in a more powerful way.

High-level API
The high-level API aims at being as simple to use and featureful as the CLI of coursier,
while retaining all the capabilities of the former low-level API. Plenty of features from the
CLI, the sbt plugins, and the tests of coursier were moved to it, simplifying their code,
and illustrating that the high-level API is powerful enough for advanced use cases.

Example of use

import coursier._

val a = Fetch()

 .addDependencies(dep"", dep"")

 .addRepository()

 .run()

Resolve() is also available along Fetch(). Both Resolve() and Fetch() have numerous
methods allowing to adjust some or all resolution parameters. Methods like future or io
can be called instead of run to run resolutions and downloads in the background.

The high-level API also makes it easier to add features to coursier, and have them be
available straightaway in the CLI, the sbt plugins, and to users using the API. Rules
described below, but also, in the future, more robust credential management or support
for mirror repositories, are added with minimum overhead thanks to this.

The high-level API is already available in coursier 1.1.0-M12. Expect a wider
announcement soon.

sbt launcher
coursier has had its own sbt launcher for some time already, able to fetch and run sbt,
like the launcher of sbt itself. With its launcher, coursier resolves and downloads sbt on
its own, which significantly speeds up its start up when an sbt version is run for the first
time.

https://github.com/coursier/sbt-launcher
https://github.com/sbt/launcher

We added more tests to it, and made a few things more robust in it (related to former
versions of sbt-coursier depending on things set up by the original sbt launcher, in
particular).

A modified version of sbt-extras allows to run sbt as simply as before, but relying on the
coursier-based launcher.

Nice speed up were seen on the Appveyor CI of coursier, which doesn't cache things
between runs, and thus benefits from a faster initial start up of sbt (job durations going
from 10-13 minutes to 8-10 minutes).

Expect a wider announcement soon (maybe after some extra minor adjustments in the
output of the launcher).

Resolution rules
In the context of SCP-20, we're adding a "rules" mechanism to coursier, allowing to
enforce some constraints during or after resolutions. These rules can be

● enforcing some or all modules to have no evicted versions (all their dependees
must explicitly depend on the selected version), like the strict conflict manager of
Ivy does,

● require several modules to all have the same version, like it should be the case
of the jackson modules,

● require some or all root dependencies not to have their version be bumped to a
higher version,

● require some or all modules not to have a snapshot version,
● etc.

Optionally, some of these rules can try to automatically address the issue, like the
second or third ones above.

Some of these rules are already implemented, and the high-level API of coursier
already allows to use those. The CLI of coursier also accepts rules.

We'd like to allow to read those rules in external JSON files very soon, and have the sbt
plugin of coursier accept rules, either via settings, and/or by reading a predefined file at
the root of the project (rules.json?). An official announcement should follow right after
that, to gather early feedback.

https://github.com/coursier/sbt-extras

General miscellaneous

@alexarchambault

● We discussed almond, our Scala kernel for Jupyter, and its internals at the
Notebook Enterprise Summit, an enterprise-focused Jupyter conference.

● We did plenty of maintenance around almond, like
○ simplifying its run-from-sources instructions,
○ automatically publishing docker images for it,
○ automatically running and validating some example notebooks on its CI,
○ reworking the landing page of its website.

● We optimized some aspects of the resolution in coursier (parsing POM files with
a SAX parser, replacing some regular expressions with optimized hand-crafted
code).

Bloop

@jvican

Bloop is a build server that provides fast compile, test and run capabilities to clients.
This last quarter, we released v1.1.1, v1.1.2, v1.2.0, v1.2.1, v1.2.2, v1.2.3, v1.2.4
and v1.2.5. Highlights of these versions include a bloop launcher, reliable compiler
cancellation, cascade compilation, incremental reporting of compiler diagnostics via
BSP, changes in CLI user ergonomics, better documentation and new installation
options for Windows.

Upcoming features

For the past two months, we have been working towards Bloop v1.3.0 which includes
state-of-the-art compiler-related improvements and aim to guarantee a safe usage of
the build server to several clients.

Reliable client isolation
Bloop v1.3.0 will enable clients to use Bloop's build server with the certainty that none
of the actions performed by other concurrent clients will interfere with their requests.
This feature is called client isolation and is critical for correctness.

https://github.com/nteract/nes
https://github.com/scalacenter/bloop
https://github.com/scalacenter/bloop/releases/tag/v1.1.1
https://github.com/scalacenter/bloop/releases/tag/v1.1.2
https://github.com/scalacenter/bloop/releases/tag/v1.2.0
https://github.com/scalacenter/bloop/releases/tag/v1.2.1
https://github.com/scalacenter/bloop/releases/tag/v1.2.2
https://github.com/scalacenter/bloop/releases/tag/v1.2.3
https://github.com/scalacenter/bloop/releases/tag/v1.2.4
https://github.com/scalacenter/bloop/releases/tag/v1.2.5

For example, picture two clients of a build server: one is a build tool and another one is
an IDE. If the IDE starts to run an application and the build tool requires a concurrent
compilation request, the JVM application will most likely crash when the second
compilation changes class files in the classes directory, because the JVM lost the open
file pointers to the loaded classes.

To achieve client isolation, Bloop returns to every client a set of unique compilation
outputs (directories with any kind of compilation product). This operation has been
designed to be as fast as possible.

Deduplicated compilation
If two compilation requests happen concurrently, Bloop will compile the target only once
if it can prove that the compilation inputs are the same. This reduces the time the build
server compiles target significantly.

Zipkin integration
Every compilation request can now be analyzed via Zipkin, a distributed tracing system.
The traces registered in the system provide valuable insight to users to analyze where
the bottleneck of their build compilation performance is.

Faster incremental and no-op compiles
Bloop has now a compiler architecture that allows it to push as much IO work as
possible to the background and perform it in parallel. Consequently, the cost of no-op
compiles is now 5 times lower than before, while the price for incrementally compiling
single files has halved. For example, Bloop can no-op compile the bloop build (with up
to 32 targets) in 200ms and the guardian/frontend build (with ~15 targets and > 60.000
lines of code) in 450ms. The performance is not linear anymore because the more IO
work there is, the more parallelism level we apply.

MOOCs

@julienrf

We have deployed, tested, and launched the Programming Reactive Systems course
on the edX.org platform!

We have started updating the content of the Functional Program Design course to make
it more self-contained and consistent.

Documentation

We have added a documentation page giving library authors a list of recipes to follow to
automate boring things like running tests on pull requests using a continuous integration
server, publishing releases, publishing online documentation or checking binary
compatibility between minor releases.

We have added a documentation page showing how to enrich the collections that are
part of the standard collections framework with user-defined operations.

Metals

@olafurpg

Metals is a Scala language server that provides advanced code editing and code
navigation support in Visual Studio Code, Vim, Sublime Text, Emacs and Atom. We
released Metals v0.4 with several new features and bug fixes, see release notes for
v0.4.0 and v0.4.4. Highlights of the v0.4 release include find symbol references, fuzzy

https://www.edx.org/course/programming-reactive-systems
https://www.coursera.org/learn/progfun2
https://docs.scala-lang.org/overviews/contributors/index.html
https://docs.scala-lang.org/overviews/core/custom-collection-operations.html
https://scalameta.org/metals/
https://scalameta.org/metals/blog/2019/01/24/tin.html
https://scalameta.org/metals/blog/2019/02/01/tin.html

symbol search, code formatting with Scalafmt, document symbol outline and syntax
errors as you type.

Low-memory symbol indexing with bloom filters
One goal of Metals is to use little memory even when analyzing large codebases. We
wrote a blog post on low-memory symbol indexing with bloom filters that explains the
techniques Metals uses to enable fast response times for features like fuzzy symbol
search and find symbol references while keeping memory usage low.

Upcoming: code completions, parameter hints and show
type

For the past four weeks, we have been working towards Metals v0.5 that adds several
new features including code completions, parameter hints and show type at point.
These features have been requested by many Metals users and we look forward to
releasing them. There is a work-in-progress pull request that already implements a lot of
functionality but work remains to stabilize the integration with the Scala presentation
compiler before v0.5 can be released.

mdoc

@olafurpg

The websites for Metals, Scalafix, Bloop, Coursier and Almond use mdoc, a
documentation tool that evaluates Scala code examples in markdown files. In January,
we released several improvements to mdoc that include a new sbt plugin with
Docusaurus support and a Scala.js integration that enables library authors to write
interactive documentation. See the release notes for v1.0.0, v1.1.0, v1.1.1 and v1.2.4.
We also wrote a blog post fast typechecked markdown documentation with clear error
messages that explains the techniques mdoc uses to speed up documentation
generation by up to 27x compared to tut, an mdoc alternative.

https://scalameta.org/metals/blog/2019/01/22/bloom-filters.html
https://github.com/scalameta/metals/pull/527
https://scalameta.org/mdoc/
https://docusaurus.io/
https://scalameta.org/mdoc/blog/2018/12/30/v1.html
https://scalameta.org/mdoc/blog/2018/12/31/v1.1.0.html
https://scalameta.org/mdoc/blog/2019/01/01/v1.1.1.html
https://scalameta.org/mdoc/blog/2019/01/04/v1.2.4.html
https://scalameta.org/mdoc/blog/2019/12/30/introduction.html
https://scalameta.org/mdoc/blog/2019/12/30/introduction.html

Scala.js

@sjrd

We mostly worked on general maintenance of Scala.js, notably with respect to the
upcoming Scala 2.13.0-RC1: Scala.js is now green in the Scala community build for
2.13.

We also kept working on Scala.js 1.x.

Scala Days 2019 organisation

@darjutak

Scala Center is organising the ScalaDays 10th edition, June 11-13 2019 at EPFL
Switzerland, with crucial support and help from Lightbend and Dajana Günther, CEO at
Trifork Germany GmbH.

Published blogs

Blog detailing our vision published in January 2019, Scala Days 2019 - Celebrating
Collaborative Success.

Blog asking for community’s input for Phil Bagwell Award published in March 2019, Phil
Bagwell Nominations. In only 2 days, we received ~70 recommendations.

Milestones reached (in this quarter):
6. CfP closed, 250 submissions (in 2018 we received ~240 submissions, for both NA
and EU editions; 2019 has only EU edition and more submissions than last year)

7. Four Platinum sponsorships signed, 10 Gold sponsors signing, ~20 in negotiations

7.1 First Scala spree Switzerland organised, 15th December

➢ At EPFL, 43 signups, 40 showed up (impressive show-up rate)
➢ We welcomed Scala developers from various cities in Switzerland on a last

Saturday before Christmas

https://www.scala-lang.org/blog/2019/01/17/scala-days-2019-celebrating-collaborative-success.html
https://www.scala-lang.org/blog/2019/01/17/scala-days-2019-celebrating-collaborative-success.html
https://www.scala-lang.org/blog/2019/03/01/phil-bagwell-nominations.html
https://www.scala-lang.org/blog/2019/03/01/phil-bagwell-nominations.html
https://github.com/scalacenter/sprees/blob/master/README.md

➢ We circulated a feedback form, and learned that lineup and format of an event
are the most important for people to decide to participate and actually show up.

➢ Check out some cool photos

8. Program published 4th March 2019

➢ 48 speakers, 2 Keynote speakers, Community panel, and Diversity panel

9. Registration opened 22nd February 2019

➢ 15% tickets sold in the first week of opening

Other

We've been contacted by SUG Organisers from different cities to help organise a
special event for active group leaders during the Scala Days. This proposal turned into
developing a great relationship between the Scala Center and organisers, as well as
between the organisers themselves. Amongst other things, they will be a part of our
diversity outreach. I’ve also explained how to create a proposal to the Advisory Board,
as they were wondering how to do it.

SIP Meetings

@darjutak and @sjrd

SIP meetings aim to cover all feature changes in Scala 3 by June 2019. For this reason,
the Committee meets 3 times for 3-day meetings on top of the regular monthly public
meetings. The first meeting of that kind was successfully organised in November 2018,
the second one is coming up mid March, and the third one is scheduled beginning of
June 2019.

➢ SIP meeting January 2019
➢ New batch up for community discussion
➢ Organisation of the extensive, face-to-face SIP meeting of March

https://docs.google.com/forms/d/e/1FAIpQLSfZPrFcIUnn-voJN6OkM_Ko5m_JaQMnMvYnQF_SpJKUm3mihQ/viewform?usp=sf_link
https://photos.app.goo.gl/WNt8K6ckyXSrCNXE8
https://photos.app.goo.gl/WNt8K6ckyXSrCNXE8
https://www.scaladays.org/schedule
https://meeting.artegis.com/event/Scala_Days_2019
https://www.youtube.com/watch?v=rOSbjgtF2Hk&t=1229s
https://contributors.scala-lang.org/t/third-batch-of-scala-3-sips

