
Scala Center updates, Q2 2018 Advisory
Board Meeting

Scala Center team: Jorge Vicente Cantero, 100% Ólafur Geirsson, 100% Martin
Duhem, 100% Guillaume Massé, 100% Julien Richard-Foy, 100% Darja Jovanovic,
80% (intern) Heather Miller, 50%

Initiatives worked on this cycle:

● Bloop
● BSP
● Pipelined compilation
● scalac-profiling

● Zinc
● Pending Scalameta v4.0
● Improved SemanticDB code health
● Improved SemanticDB performance
● Scalameta Native
● Pending Scalafix v0.6
● Bloop
● Dotty
● Scala Native
● load-plugin

● MOOCs
● Collections
● scalajs-bundler
● Accessible Scala
● Other activities: talks, sprees, conferences, SIP

Bloop

@jvican

There has been a lot of activity for the past three months in Bloop:

1. 19 OSS Scala contributors have merged changes in the repository.
2. Release of three milestones with lots of features, improvements and bugfixes.

Read the release notes to have an idea of all the developments during the past
three months in Bloop. We plan on cutting ​1.0.0​ next week after confirming the
stability of the compilation server.

i. Release notes for v1.0.0-M9
ii. Release notes for v1.0.0-M10
iii. Release notes for v1.0.0-M11

My changes in the repository account for a total of 11,997 lines added and 6,987 lines
removed.

My work this past three months has focused on designing a stable configuration file
format, improving the sbt integrations and implementing all the features required for the
Build Server Protocol.

BSP

@jvican

I have released the first version of BSP, ​v1.0.0​. In this release, I've worked with Justin
Kaeser and Olafur Páll Geirsson in refining the theoretical details of the specification.

The Build Server Protocol has been announced in ​this ​scala-lang​ blog post
(​recommended read​). The blog post contains images showing an implementation of the
Build Server Protocol in Bloop (acting as a server) and IntelliJ (acting as a client).

This implementation has helped to refine and prove the feasibility of such a protocol. It
features a fast project import and collection of compiler diagnostics from the build tool
and displaying them in the editor. The blog post explains other ways this integration can
be improved to be better than the stock Gradle, Maven and sbt integrations that IntelliJ
currently has.

https://github.com/scalacenter/bloop/releases/tag/v1.0.0-M9
https://github.com/scalacenter/bloop/releases/tag/v1.0.0-M10
https://github.com/scalacenter/bloop/releases/tag/v1.0.0-M11
https://www.scala-lang.org/blog/2018/06/15/bsp.html
https://www.scala-lang.org/blog/2018/06/15/bsp.html
https://www.scala-lang.org/blog/2018/06/15/bsp.html

Aside from this, there has been a lot of work in presenting this work in the talk that
Justin and I presented in Scalasphere 2018, and the preparation of a sneak peek in our
ScalaDays talks.

Pipelined compilation

@jvican

I have implemented a prototype of pipelined compilation that I plan to merge in Bloop
some time during the next weeks.

What is pipelined compilation? Pipelined compilation is a technique proposed by Rory
Graves on Scalasphere 2017 to speed up compilation in the context of build graphs.
Builds usually compile modules in their topological order and in order to compile a given
module, all its project dependencies need to have been compiled before.

What pipelined compilation enables is to start compilation of dependent modules ​right
after​ the typechecking of its project dependencies.

For build graphs that are sequential (modules cannot be compiled in parallel at any
point), pipelined compilation achieves a ​theoretical​ speedup of

30%, taking into account that typer usually takes around 60% of the compilation
pipeline.

For build graphs that are parallel, the speedup can be even bigger depending on the
shape of the build graph and how many modules can be compiled in parallel.

The practical performance speedup for real-world projects is yet to be assesed in the
next weeks. A detailed report analyzing its impact in OSS Scala projects will be
presented to the community.

The implementation is not yet merged and is split across the Zinc and Bloop
repositories.

1. Zinc changes​.
2. Bloop changes​.

https://github.com/scalacenter/zinc/tree/topic/pipelined-compilation
https://github.com/scalacenter/bloop/tree/topic/big-zinc-upgrade+pipelining

When the implementation is more solid and there is a better understanding of the
performance implications, a PR to merge the zinc implementation upstream will be
opened.

scalac-profiling

@jvican

I have published a ​blog post featuring the use of ​scalac-profiling​ to speed up compilation
times​. The blog post explains how I used ​scalac-profiling​ in bloop to speed up
compilation by 8x by removing unnecessary macro expansions and deduplicated
implicit searches. The plugin generates flame graphs for macro expansions and implicit
search and allows more applications explained in ​the repository​.

This blog post has been in the makings for a long time due to two reasons: the difficulty
of getting reliable performance numbers for every change in the guide and the need for
modifications in the plugin to remove compilation overhead and handle big amounts of
implicit searches and macro expansions (in the order of tens of thousands).

The new release also integrated with some changes with regards to performance that
were merged in Scala 2.12.6 and that the plugin needed to interface with. PR highlights:

1. Add better profiling for macro and implicit interaction​.
2. Add reproduced version of case-app ineffiency​.
3. improve the internals of the plugin implementation to scale up​.

Zinc

@jvican

● Zinc now detects changes in private members of traits​.
● General maintenance work and PR reviews.

https://github.com/darjutak/wip-posts/blob/master
https://github.com/darjutak/wip-posts/blob/master
https://github.com/darjutak/wip-posts/blob/master
https://github.com/darjutak/wip-posts/blob/master
https://github.com/scalacenter/scalac-profiling
https://github.com/scalacenter/scalac-profiling/pull/22
https://github.com/scalacenter/scalac-profiling/pull/23
https://github.com/scalacenter/scalac-profiling/pull/21
https://github.com/sbt/zinc/pull/542

Pending Scalameta v4.0

In collaboration with Eugene Burmako from Twitter we released a total of 7 Scalameta
releases. Release notes:

● v4.0.0-M2
● v4.0.0-M1
● v3.7.3
● v3.7.2
● v3.7.0
● v3.6.0

There are ​26 open issues​ remaining to complete the v4.0 milestone.

The primary focus for v4.0 is to stabilize the ​SemanticDB specification​ and ensure the
following tools are consistent the spec:

● metac​: compiler plugin to emit complete SemanticDB files
● metacp​: command-line tool and library to emit SemanticDB types for public

signatures in a classpath
● metap​: command-line tool and library to pretty-print SemanticDB

To read more about these tools, see the ​SemanticDB guide​ and my slides for
"SemanticDB for Scala developer tools"​ for my at ScalaSphere in April.

Improved SemanticDB code health

The primary focus of Scalameta v4.0 is to stabilize SemanticDB APIs and part of that
goal involves cleaning up unnecessary abstractions in the codebase. I had observed
during the Scala Spree in Krakow that first-time contributors struggled to become
productive in the SemanticDB codebase. One milestone towards improving the situation
was PR ​#1506​. This PR did a significant refactoring to get rid of one unnecessary layer
of abstraction. The PR resulted in the removal of ~5.000 lines of code making the code
easier to reason about and contribute to. It was gratifying to validate that code health
had had indeed improved by receiving a non-trivial PR from a first-time contributor at
the Scala Spree in flatMap(Oslo), after the PR #1506 had been merged.

https://github.com/scalameta/scalameta/releases/tag/v4.0.0-M2
https://github.com/scalameta/scalameta/releases/tag/v4.0.0-M1
https://github.com/scalameta/scalameta/releases/tag/v3.7.3
https://github.com/scalameta/scalameta/releases/tag/v3.7.2
https://github.com/scalameta/scalameta/releases/tag/v3.7.0
https://github.com/scalameta/scalameta/releases/tag/v3.6.0
https://github.com/scalameta/scalameta/milestone/26
https://github.com/scalameta/scalameta/blob/master/semanticdb/semanticdb3/semanticdb3.md
https://github.com/scalameta/scalameta/blob/master/semanticdb/semanticdb3/guide.md
https://geirsson.com/assets/scalasphere-2018.pdf
https://github.com/scalameta/scalameta/pull/1506

Improved SemanticDB performance

@olafurpg

One positive side-effect of the recent work in SemanticDB is improved performance.
Benchmarks compiling the Slick and Akka projects show that the overhead of enabling
the SemanticDB compiler plugin has dropped by over 40% compared to v2.1.7, which is
the SemanticDB version used by the latest stable release of Scalafix.

 Slick Akka Overhead

Baseline 113s 100s 0%

v2.1.7 170s 170s 50-70%

v4.0.0-M3 123s 125s 8-25%

The benchmark numbers were obtained by consecutively compiling the projects via sbt
and collecting the hot compile times once the numbers stabilized. My hypothesis for
why the overhead is lower in Slick compared to Akka is that a larger fraction of the
compile-time is spent during typechecking in Slick.

Note that performance has not been a primary focus recent months. There remain
plenty opportunities to reduce the overhead of the compiler plugin even further if we
choose to invest more in that area.

Scalameta Native

@olafurpg

Scalameta v4.0.0-M1 added support for Scala Native, enabling users to build
command-line tools with instant startup times. Previously, command-lines tools using
Scalameta such as ​scalafmt​ (code formatter) suffered by slow startup times of the JVM
making it difficult to integrate with editors like Vim and Sublime Text. Early results by
building a ​scalafmt​ binary with Scala Native show that formatting a single file from the
command-line can go from 1.5s on the JVM down to 50ms with native, a 30x speedup.

The GIF below shows ​metap​, a command-line tool to print SemanticDB files, running for
600ms on the JVM and 15ms with Scala Native

Scala Native enables Scala developers to build a whole new category of developer tools
that previously suffered badly from slow startup times on the JVM.

Pending Scalafix v0.6

@olafurpg

Scalafix v0.6 is currently blocked by the remaining 26 ticket in the Scalameta v4.0
milestone. Recent work in Scalafix has involved many interesting PRs, of which
highlights include:

● #737​ Big cleanup of internals taking the first steps towards Scalafix v1. The PR
touches on a lot of parts, including:

https://github.com/scalacenter/scalafix/pulls/737

○ New ​scalafix.v1​ package containing a redesigned semantic API taking
advantage of the lessons learned over the past year with SemanticDB.
The ​scalafix.v1​ API is still evolving.

○ Move current APIs to ​scalafix.v0​ package so that existing rules can
continue to work (automatic migration provided).

○ Significantly lower memory pressure when running the command-line
interface on larger projects.

● #699​ migrate ​ExplicitResultTypes​ to take full advantage of SemanticDB
● #696​, ​#690​, ​#689​, ​#687​, ​#666​, ​#665​, address user reported issues on the sbt

plugin
● #741​ Add ​ScalafixTestkitPlugin​ to simplify the g8 template used for custom rules.

An automatic rewrite is provided that migrates the sbt builds for custom rule
authors.

Read the release notes for ​v0.6.0-M2​ for more details on activity including community
contributed improvements.

Martin Duhem
Between mid-march and today, I've been focused mainly on Bloop and on Dotty.

On the Bloop side, I have made a lot of progress and added much requested features
such as support for Scala Native and Scala.js. I have presented Bloop in Krakow at
Scala Sphere, and co-presented at Scala Days in Berlin with Jorge Vicente Cantero
(and will co-present with him again at Scala Days New York).

Regarding Dotty, I have been focusing on improving the getting started experience,
adding more features to Dotty IDE, fixing some bugs in the compiler and working on
Dottydoc (the equivalent of scaladoc, for Dotty).

I also did some work on Scala Native to make it possible for other tools to run tests
written with Scala Native. This is a continuation of my previous work to add a build API
to Scala Native.

Finally, I started an experiment to make it easier to start and configure language servers
backed by sbt. This is used by ​metals​ for starting up, and a proposal for use in Dotty is
open. I've used it to provide a better getting started experience for newcomers to the
Scala language.

https://github.com/scalacenter/scalafix/pulls/699
https://github.com/scalacenter/scalafix/pulls/696
https://github.com/scalacenter/scalafix/pulls/690
https://github.com/scalacenter/scalafix/pulls/689
https://github.com/scalacenter/scalafix/pulls/687
https://github.com/scalacenter/scalafix/pulls/666
https://github.com/scalacenter/scalafix/pulls/665
https://github.com/scalacenter/scalafix/pulls/741
https://github.com/scalacenter/scalafix/releases/tag/v0.6.0-M2

Bloop

Improvements

Support linking and running of Scala Native projects

Up to this point, Bloop was able to compile all kinds of projects, including Scala.js and
Scala Native projects, but it couldn't run them not perform the last steps of the pipeline
(linking, and generating either a native binary or JS code).

I have been working towards fully supporting Scala Native in Bloop, and this work has
recently been merged.

Thanks to these changes, users of Bloop can seamlessly compile, link and run their
Scala Native projects.

This work: ​https://github.com/scalacenter/bloop/pull/457

Support linking and running of Scala.js projects

Thanks to the great community that formed itself around Bloop, we are very lucky to see
exciting contributions being submitted by our users. Tim Nieradzik (@tindzk) has
submitted a patch that added support for Scala.js, by re-using the bits I introduced to
support Scala Native.

I have been adding tests and polishing this implementation in order to be able to
support Scala.js in Bloop.

Similarly to Scala Native, compiling, linking and running is supported, but running the
test is not supported yet. We plan on adding that very soon.

This work: ​https://github.com/scalacenter/bloop/pull/526

Support running tests of Scala Native projects

Even though Bloop can compile and run Scala Native projects, it is still not able to run
the tests. I have been working on a fully working prototype where running the test is
possible, but unfortunately its integration in Bloop is waiting for a new release of Scala
Native, where the test runner is split out of the sbt plugin.

https://github.com/scalacenter/bloop/pull/457
https://github.com/scalacenter/bloop/pull/526

The necessary modification to Scala Native have been made. More information about
this part is available in the "Scala Native" section of this report.

This work:
https://github.com/scalacenter/bloop/commit/84395b666eafdeae6f2f664a30a39fc86c6b
ce7d

Support compiling with Dotty in Bloop

An early prototype of compiling with Bloop using Dotty written by Jorge Vicente Cantero
existed, but never made it to the finish line because we were blocked by Dotty being
compatible with Zinc 1.0. Thanks to the recent release, I have been able to rebase the
previous work and use it for completely supporting Dotty in Bloop.

This work: ​https://github.com/scalacenter/bloop/pull/460

Extract ​classpathOptions​ in sbt-bloop

In order to correctly configure the compiler, Bloop needs to know precisely how to
configure the classpath for compilation. This info is know in sbt as the ​classpathOptions​.

Having the ​classpathOptions​ lead to other performance work, which is the next item on
this list.

This work: ​https://github.com/scalacenter/bloop/pull/110

Move ​classpathOptions​ to ​CompileConfiguration

Zinc needs ​ClasspathOptions​ to know how to configure the classpath for compilation
(those options answer questions such as "should the Scala library be left on the
classpath?" or "Should the compiler be included", etc.) These options were passed
directly to the class that wraps a compiler instance, rather than passed directly when the
compiler is actually invoked.

This means that it was not possible to share the same compiler instance between
different projects that had different ​ClasspathOptions​, because the wrapper around the
compiler had to be different. All in all, this caused either performance issues or
correctness issues.

I refactored Zinc so that the ​ClasspathOptions​ are passed when the compiler is invoked.

https://github.com/scalacenter/bloop/commit/84395b666eafdeae6f2f664a30a39fc86c6bce7d
https://github.com/scalacenter/bloop/commit/84395b666eafdeae6f2f664a30a39fc86c6bce7d
https://github.com/scalacenter/bloop/pull/460
https://github.com/scalacenter/bloop/pull/110

This work: ​https://github.com/scalacenter/zinc/pull/4

● Many bugfixes in all parts of the project
● Improvements and fixes to our benchmarking infrastructure

Bugfixes

Kebabize name of arguments in autocompletion

Bloop sometimes generated autocompletion for wrong argument names, because of an
error in how the completion suggestions were generated. I fixes this issue so that the
correct names are proposed.

This work: ​https://github.com/scalacenter/bloop/pull/487

Fix depth of project loading

Bloop used to try loading all files whose name matched ​*.json​ in a directory hierarchy,
regardless of their depth in the hierarchy. This caused performance issues and, under
certain conditions, Bloop could try loading files that were not project definitions. No
more.

This work: ​https://github.com/scalacenter/bloop/pull/366

Dotty

Improvements

Sharing more infrastructure between Dotty and Dottydoc

Dotty features a powerful miniphase infrastructure which allows it to squash several
phases and perform less tree traversals. Dottydoc is built around the same idea, but
unfortunately, very little code to perform the phase squashing is shared between the
two.

Moreover, Dottydoc phases do not resemble, in the way they are written, the phases of
Dotty. This is confusing for the developers and leads to bugs.

https://github.com/scalacenter/zinc/pull/4
https://github.com/scalacenter/bloop/pull/487
https://github.com/scalacenter/bloop/pull/366

I worked on a large refactoring of Dottydoc, so that the Mega/Miniphase infrastructure of
Dotty is reused. This allowed me to re-write the phases in a style that is closer to the
rest of the compiler and easier to understand.

Overall, the code after refactoring is shorter (by about 10%) and easier to understand
than the previous implementation.

This work:
https://github.com/lampepfl/dotty/compare/master...Duhemm:topic/dottydoc-simplify

Keep documentation on package objects

Scaladoc and Dottydoc allow users to put documentation for a whole package by
adding it to the package object. Unfortunately, this was broken in Dottydoc and the
documentation put on package objects would never show up in the generated
documentation.

I fixed the ordering of the phases of Dottydoc so that this configuration is no longer lost.

This work: ​https://github.com/lampepfl/dotty/pull/4573

Enable ​-Ycheck:all​ in Dottydoc

-Ycheck​ is the flag that we use in Dotty to perform more verification during compilation,
to make sure that the state in which the code is is correct after every phase of the
compiler.

Unfortunately, the way Dottydoc was working meant that several invariants of the
compiler would be violated, which prevented us from enable ​-Ycheck​ when running
Dottydoc.

The problem was that Dottydoc would generate JVM incompatible names for the
symbols introduced with ​@usecase​ in the documentation. Changing the way these
names are encoded so that they remain unique and compatible with the JVM fixed our
problems and allowed us to perform more verifications in the tests of Dottydoc.

This work: ​https://github.com/lampepfl/dotty/pull/4575

https://github.com/lampepfl/dotty/compare/master...Duhemm:topic/dottydoc-simplify
https://github.com/lampepfl/dotty/pull/4573
https://github.com/lampepfl/dotty/pull/4575

Sticky attachments

In Dotty, documentation is attached to the trees as "attachments". These attachments
can then be retrieved and used in other parts of the compiler.

Unfortunately, those attachments were lost when the tree went under transformation.
For instance, the attachments that were given to ​object​s were lost during desugaring.

To circumvent this problem and recover the elusive attachments, I introduced the
concept of sticky attachments in the compiler, which are attachments that survive tree
transformation.

This work: ​https://github.com/lampepfl/dotty/pull/4292

Typed imports

Imports are not typed in Dotty, because it is not obvious what type should be given to
these nodes. Indeed, in imports, the same name can mean both a type and a term, for
instance.

Because imports are untyped, this means that they need to be special cased in many
places, such as the IDE for instance: jump-to-definition doesn't work on import nodes,
because the node doesn't have a type.

The second problem is that, Instead of being verified during the ​typer​ phase, imports are
checked in ​posttyper​. Unfortunately, this means that wrong imports won't be reported for
programs that do not pass the ​typer​, producing confusing error messages where the
root of the error is not mentioned.

In order to solve that, I worked on a proof of concept where imports are typed. In order
to give types to import nodes, I re-use the kind of denotation that is assigned to
overloaded symbols. This design works and solves our problem, but we're worried
about the additional complexity that incurs from this change, and are still thinking about
other way around the problem.

This work:
https://github.com/dotty-staging/dotty/commit/cc62c2849a9a11cf689780f4645db2bf591
bb787

https://github.com/lampepfl/dotty/pull/4292
https://github.com/dotty-staging/dotty/commit/cc62c2849a9a11cf689780f4645db2bf591bb787
https://github.com/dotty-staging/dotty/commit/cc62c2849a9a11cf689780f4645db2bf591bb787

Jump to definition in imports

Jump-to-definition doesn't work on import nodes, because they need special casing
(see previous section).

I worked on Dotty IDE so that jump-to-definition can be supported on those nodes. This
doesn't use the work I described in "Typed imports", but instead relies on special casing
handling of those nodes. We're waiting to see what is the best design before integrating
this into the compiler.

This work: ​https://github.com/lampepfl/dotty/pull/4199

Add tests for Dotty IDE

Together with Nicolas Stucki, we worked on adding tests for Dotty IDE, which only relied
on manual testing beforehand. These tests allow us to quickly and simply write
interactive tests, where the language server can be queried given a position or range of
positions.

This work: ​https://github.com/lampepfl/dotty/pull/3766

Bugfixes

Intersection dominator of array types

An error in the compilation of the dominator type for intersection types that involve
Array​s caused wrong generic java signatures to be generated by Dotty, for code such
as:

def​ ​foo​[​U​](​u​: ​Array​[​Int​] & ​Array​[​U​])​:​ ​Unit​ ​=​ ()

This work: ​https://github.com/lampepfl/dotty/pull/4249

Generic Java signature for FunctionXXL

In Dotty, functions with more than 22 type parameters are converted into ​FunctionXXL​.
Unfortunately, Dotty generated wrong Java generic signatures for these functions, and
instead generated the signature for ​Function​, and not ​FunctionXXL​. I fixed this issue.

This work: ​https://github.com/lampepfl/dotty/pull/4287

https://github.com/lampepfl/dotty/pull/4199
https://github.com/lampepfl/dotty/pull/3766
https://github.com/lampepfl/dotty/pull/4249
https://github.com/lampepfl/dotty/pull/4287

Fix crashes in the Dotty language server

A recent refactoring in the Dotty language server caused it to crash sometimes at
startup. The reason for crashing was that it sometimes tried to continue reading a zip
file after closing it.

This work: ​https://github.com/lampepfl/dotty/pull/4208

Ignore ​.sbt​ files in Dotty IDE

Dotty IDE was trying to typecheck and provide completions for ​.sbt​ files, which was
doomed to fail because it doesn't have the necessary information to understand those
files.

The reason for this bug existing in the first place, is that the Dotty Language Server was
being enabled for all files that are considered by VSCode as "Scala" files, which
included sbt files.

I changes our VSCode plugin so that these files are no longer inspected by the Dotty
language server.

This work: ​https://github.com/lampepfl/dotty/pull/4556

Fix positions of lifted expressions

When lifting expressions (such as in ​val foo = bar :: Nil​), Dotty was assigning wrong
positions to the new trees. This error was found when we noticed that jump-to-definition
was not working on the left operand of right associative operators.

I fixed the positions of the lifted expressions so that they are correct, which allowed
Dotty IDE to behave correctly.

This work: ​https://github.com/lampepfl/dotty/pull/4516

Scala Native

Moving the test runner out of the sbt plugin

Test written with Scala Native need a special runner to be executed, because they
cannot be started using reflection, as it is done on the JVM. Instead, I developped a few
months ago a solution (very inspired from the solution used by Scala.js) that starts a

https://github.com/lampepfl/dotty/pull/4208
https://github.com/lampepfl/dotty/pull/4556
https://github.com/lampepfl/dotty/pull/4516

server which will communicate with the build tool, and orchestrate the test runs. This
allows us to run tests transparently in sbt, via a special test runner.

In order to be able to make other tools (such as Mill or Bloop) able to use it, I worked to
split this out of the sbt plugin that Scala Native offers. This work has not been released
yet, but will certainly be part of the next release of Scala Native.

This work: ​https://github.com/scala-native/scala-native/pull/1234

load-plugin

load-plugin​ is a set of functions that can be injected in sbt in order to make it easier to
dynamically load sbt plugins (​load-plugin​ itself is not an sbt plugin.)

load-plugin​ adds two commands to sbt:

● load-plugin​ which downloads and loads a plugin inside an already loaded build:
● > load-plugin com.eed3si9n:sbt-assembly:0.14.6 sbtassembly.AssemblyPlugin

This plugin is downloaded and loaded inside the build

● if-absent​ which will perform some action if a plugin absent from a build:
● > if-absent dotty.tools.sbtplugin.DottyPlugin \

 "set every scalaVersion := \"0.9.0\"" \

 "load-plugin ch.epfl.lamp:sbt-dotty:0.9.0 dotty.tools.sbtplugin.DottyPlugin\""

If the Dotty plugin is not already loaded, set the Scala version and load the plugin.

Together, these commands can be used to inject programmatically any kind of sbt
plugin, notably language servers.

This also has the advantage of being able to handle both configure and un-configured
(as in, default) builds in sbt.

I've been using this to develop a proof of concept with Dotty IDE where one can simply
open VSCode inside a completely empty directory, and have the Dotty LSP start up
when a Scala file is created. This server is configured on the fly, but is able to perform
fully and give accurate help to the user, completely seamlessly.

https://github.com/scala-native/scala-native/pull/1234

This re-creates the experience that users get when using VSCode with a Java language
server, and is the best experience in my opinion.

This work: ​https://github.com/scalacenter/load-plugin​ Integration in Dotty:
https://github.com/lampepfl/dotty/pull/4304​Integration in Metals:
https://github.com/scalameta/metals/pull/287

MOOCs
● Mentioned our openedx instance on scala-lang.org. ​#1079
● Filtered out errors caused by CEDE’s infrastructure instability ​#380
● Reviewed/tweaked contents of the akka-streams lessons
● Engaged people to discuss on our openedx instance
● Polished the slides and assignments of week1
● Submitted MOOC to CEDE
● Wrote a chapter about FRP
● Wrote technical documentation about our MOOCs infrastructure

Collections
Published a blog article, ​Scala 2.13's Collections

● Moved extensibility framework to the core collections ​#6674
● Added user documentation ​#1078
● Reviewed ​lampepfl/dotty#4317
● Made reported positions deterministic in Scala.js ​#3346
● Updated the ​FAQ
● Renamed the migration rule ​#18​ and explained future plans
● Clarified the new structure of the collections’ projects (scala-collection-compat,

scala, collection-strawman) ​#558​#562​#564
● Created ​https://github.com/julienrf/scala-collection-contrib
● Added CLA check to scala-collection-compat
● Hunted bugs, regressions, issues ​#6541​#6542​#6543​#6544​#6545
● Upgraded scala-parser-combinators ​#148
● Backported PRs from collection-strawman to scala
● Initiated the Scala.js library migration to 2.13.0-M4 ​#3329
● Fixed partest enrich-gentraversable ​#6488

https://github.com/scalacenter/load-plugin
https://github.com/lampepfl/dotty/pull/4304
https://github.com/scalameta/metals/pull/287
https://github.com/scala/docs.scala-lang/pull/1079
https://github.com/lampepfl/moocs/pull/380
https://www.scala-lang.org/blog/2018/06/13/scala-213-collections.html
https://github.com/scala/scala/pull/6674
https://github.com/scala/docs.scala-lang/pull/1078
https://github.com/lampepfl/dotty/pull/4317
https://github.com/scala-js/scala-js/pull/3346
https://github.com/scala/collection-strawman/wiki/FAQ
https://github.com/scala/scala-collection-compat/pull/18
https://github.com/scala/collection-strawman/pull/558
https://github.com/scala/collection-strawman/pull/562
https://github.com/scala/collection-strawman/pull/564
https://github.com/julienrf/scala-collection-contrib
https://github.com/scala/scala/pull/6541
https://github.com/scala/scala/pull/6542
https://github.com/scala/scala/pull/6543
https://github.com/scala/scala/pull/6544
https://github.com/scala/scala/pull/6545
https://github.com/scala/scala-parser-combinators/pull/148
https://github.com/scala-js/scala-js/pull/3329
https://github.com/scala/scala/pull/6488

● Reverted renaming of a public method in scala-reflect ​#6489
● Collaborate with Dotty team on soundness issues in the strawman ​#521
● Fixed bug in ListBuffer ​#6469
● Added BuildFrom to scala-collection-compat ​#3
● Added support for Scala 2.11 to scala-collection-compat ​#5
● Added `lazyAppendAll` alias to `append` ​#6
● Added an `iterator()` alias to `iterator` ​#7
● Struggled again to setup scoverage for the scala library
● Updated PR adding support for 2.13 to scala-parser-combinators ​#134
● Added rewrite rule from `append` to `lazyAppendAll` ​#527
● Removed rewrite rule that replaced `Stream` with `LazyList` ​#528
● Migrated scalacheck to 2.13.0-M4 ​#391
● Fixed some Scala integration tests ​#6482
● Finished ArrayDeque, Queue ​#490
● Backported all fixes applied to scala/scala ​#493
● Fixed a few bugs ​#494​, ​#495​, ​#496​, ​#497​, ​#498​, ​#499​, ​#500

scalajs-bundler
● Reviewed and merged PRs (most notably, ​#247​, ​#241​, ​#234​)
● Released 0.11.0 and 0.12.0

Accessible Scala

Scala is proudly a welcoming environment for all. The Scala Center is demonstrating
this by supporting the development of Accessible Scala, a tool for blind and
partially-sighted developers (​see SCP-016​).

This quarter, we completed the project and delivered various artifacts: An ​online demo
(video)​ you can try in your browser, a vscode extension, and a library to describe scala
code verbally. Besides, we solved the issue of describing complex expressions with a
technique we call the Cursor. It consists of navigating the AST and describe each nod
we visit.

You can find more details on the ​blog post​ we released.

------------ insert Jorge report----------------

https://github.com/scala/scala/pull/6489
https://github.com/scala/collection-strawman/pull/521
https://github.com/scala/scala/pull/6469
https://github.com/scala/scala-collection-compat/pull/3
https://github.com/scala/scala-collection-compat/pull/5
https://github.com/scala/scala-collection-compat/pull/6
https://github.com/scala/scala-collection-compat/pull/7
https://github.com/scala/scala-parser-combinators/pull/134
https://github.com/scala/collection-strawman/pull/527
https://github.com/scala/collection-strawman/pull/528
https://github.com/rickynils/scalacheck/pull/391
https://github.com/scala/scala/pull/6482
https://github.com/scala/collection-strawman/pull/490
https://github.com/scala/collection-strawman/pull/493
https://github.com/scala/collection-strawman/pull/494
https://github.com/scala/collection-strawman/pull/495
https://github.com/scala/collection-strawman/pull/496
https://github.com/scala/collection-strawman/pull/497
https://github.com/scala/collection-strawman/pull/498
https://github.com/scala/collection-strawman/pull/499
https://github.com/scala/collection-strawman/pull/500
https://github.com/scalacenter/scalajs-bundler/pull/247
https://github.com/scalacenter/scalajs-bundler/pull/241
https://github.com/scalacenter/scalajs-bundler/pull/234
https://github.com/scalacenter/advisoryboard/blob/master/proposals/016-verbal-descriptions.md
https://scalacenter.github.io/accessible-scala-demo/
https://www.youtube.com/watch?v=Y7xz0-KkBOU
https://www.scala-lang.org/blog/2018/06/14/accessible-scala.html

Other activities: sprees, talks, conferences

Sprees, talks, conferences

Scala Sphere​, Krakow, 25-17 April

Scala spree
In collaboration with VirtusLabs who hosted and sponsored the venue, the Scala Center
team organised a Scala Spree on April 15th. There were about 25 participants that had
an opportunity to work on 12 libraries and tools and successfully merged many PRs by
the end of the event.

Spree photo

Talks
Ólafur Páll Geirsson presented "SemanticDB for Scala developer tools" ​Slides

Martin Duhem presented "Meet Bloop" ​Slides

Jorge Vicente Cantero presented "Build Server Protocol and New IDEAS" together with
Justin Kaeser from Jetbrains ​Slides

flatMap​ Oslo, 3-4 May 2018

Scala spree
In collaboration with Arktekk who hosted and sponsored the venue, Scala Center team
organised Scala spree on May 2nd. There were 9 participants that had an opportunity to
work on Dotty, Scalameta and Scalafix libraries which resulted in 6 open PRs by the
end of the event.

Spree photo

https://scala.sphere.it/
https://github.com/scalacenter/sprees/blob/04cf4c56564616dee319bef456726844814d9715/README.md
https://photos.app.goo.gl/zQ1JWwddXvW5DWGh8
https://geirsson.com/assets/scalasphere-2018.pdf
https://github.com/Duhemm/presentations/blob/master/2018-04-17-meet-bloop.pdf
http://jorge.vican.me/slides/BSP.pdf
https://2018.flatmap.no/
https://www.meetup.com/scalabin/events/249937547/
https://photos.app.goo.gl/Y1RvpJQyLqSdbsxF6

Talks
Ólafur Páll Geirsson Presented "Six steps from zero to IDE" ​Slides​. ​Talk

Scala Days​ Berlin, 14-18 May 2018

Scala spree
In collaboration with Zalando who hosted and sponsored the venue, Scala Center team
organized a Scala spree on 14th of May. This was a two to three times bigger spree
than any before and the library authors decided to propose a different structure to be
able to scale the learning experience to match the number of participants. There were
about 60 participants that had an opportunity to work on the Scala compiler, Dotty
compiler, sbt, Scalafix and Bloop. By the end of the event, 8 pull requests were merged
into sbt, 10 people completed an intensive Scalafix workshop, 2 long-standing issues
were closed in Bloop and more. ​Scala Days takeaway blog mentioning the spree​ ​ Spree
photo

Talks
Ólafur Páll Geirsson Presented "Six steps from zero to IDE" ​Slides​.

Julien Richard-Foy and Stefan Zeiger presented “Migrating to Scala 2.13” ​Abstract

Martin Duhem and Jorge Vicente Cantero presented "Meet Bloop" ​Slides

Scala Contributors Summit
On the 18th of May, we had the first Scala Contributors Summit in the Zalando offices.
Gathering about 50 people involved in the development, documentation and community
building around Scala, it was the opportunity to discuss overarching plans for
contributions. After an initial brainstorming of topics the attendees thought worth
discussing, they split in various working groups with different focuses, ranging from
tooling to migration plans for Scala 3, macros, build tools to education and education.
Most working groups concluded with concrete tasks that could be undertaken in the
near future.​Contributors Summit photo

https://geirsson.com/assets/scaladays-2018.pdf
https://www.youtube.com/watch?v=4AkdUhUkHl4
https://eu.scaladays.org/
https://www.meetup.com/Scala-Berlin-Brandenburg/events/250525599
https://techblog.commercetools.com/scaladays-2018-berlin-takeaways-f4f40f2fe925
https://photos.app.goo.gl/LdNxEZLKMJqbGiEx9
https://photos.app.goo.gl/LdNxEZLKMJqbGiEx9
https://geirsson.com/assets/scaladays-2018.pdf
https://eu.scaladays.org/lect-6924-migrating-to-scala-2.13.html
https://github.com/Duhemm/presentations/blob/master/2018-05-16-meet-bloop.pdf
https://photos.app.goo.gl/AccaCgBGyZmNA3hm8

SIP Meeting May 2018

We scheduled a SIP meeting the last hour of the Contributors Summit because most of
the Committee Members were participating that day and could meet in person. The SIP
meeting was about the role of the Committee in the upcoming changes towards Scala 3.
To read/watch more about the SIP May 2018 please go to: ​minutes​ or watch the
meeting on ​Scala Center's YouTube channel

In short: Quorum was not met, but the meeting still took place in a form of an open
discussion. The meeting was devoted to discussing how SIP Committee should handle
the approval of Scala 3 changes into the specification and how it would organize during
the next year, given that Scala 3 will be feature freeze by then.

https://docs.scala-lang.org/sips/minutes/2018-05-18-sip-minutes.html
https://www.youtube.com/watch?v=q2LVmTe9qmU

